Co-delivery of plasmid DNA and doxorubicin by solid lipid nanoparticles for lung cancer therapy.
نویسندگان
چکیده
The co-delivery of DNA and antitumor drugs has the potential to treat cancer. In this study, we aimed to develop surface-modified, co-encapsulated solid lipid nanoparticles (SLN) containing enhanced green fluorescence protein plasmid (pEGFP) and doxorubicin (DOX) in order to create a multifunctional delivery system that targets lung cancer cells, in an effort to improve the efficacy of cancer therapy. DOX- and pEGFP-loaded SLN were prepared separately and then mixed to form co-encapsulated SLN (SLN/DE). Transferrin (Tf)-containing ligands were used for the surface coating of the vectors. The in vitro transfection efficiency of the modified vectors was evaluated using a human alveolar adenocarcinoma cell line (A549 cells) and the in vivo transfection efficiency of the modified vectors was evaluated using mice bearing A549 tumors. The Tf-modified DOX and pEGFP co-encapsulated SLN (T-SLN/DE) had a particle size of 267 nm with a 42 mV surface charge. The in vitro cytotoxicity of T-SLN/DE was low (cell viability was between 80 and 100% compared with the controls). T-SLN/DE displayed a remarkable therapeutic effect both in drug delivery and gene therapy. In conclusion, our results demonstrate that the multifunctional delivery system can improve the efficacy of cancer therapy through the combination of gene therapy and chemotherapy. In addition, the coating of active targeting ligands can improve the efficacy of the carriers at targeting lung cancer cells. Thus, the novel gene and drug delivery system offers an effective strategy for lung cancer gene therapy.
منابع مشابه
Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin
BACKGROUND Nanostructured lipid carriers (NLC), composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. The aim of this study was to develop surface-modified NLC as multifunctional nanomedicine for codelivery of enhanced green fluorescence protein plasmid (pEGFP) and doxorubicin (DOX). METHODS TWO DIFFERENT NANOCARRIERS: pEGFP- and DOX-loaded NLC, an...
متن کاملTargeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA
PURPOSE Nanostructured lipid carriers (NLC) represent an improved generation of lipid nanoparticles. They have specific nanostructures to accommodate drugs/genes, and thus achieve higher loading capacity. The aim of this study was to develop transferrin (Tf)-decorated NLC as multifunctional nanomedicine for co-delivery of paclitaxel (PTX) and enhanced green fluorescence protein plasmid. METHO...
متن کاملTransferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer
In the present study, a targetable vector was developed for the targeted delivery of anticancer agents, consisting of lipid-coated poly D,L-lactic-co-glycolic acid nanoparticles (PLGA-NP) that were modified with transferrin (TF). Doxorubicin (DOX) was used as a model drug for lung cancer therapy. The use of these NPs combined the advantages and avoided the disadvantages exhibited individually b...
متن کاملApplication of Supercritical Fluid Technology for Preparation of Drug Loaded Solid Lipid Nanoparticles
Small changes in pressure or temperature, close to the critical point, lead to large changes in solubility of supercritical carbon dioxide (CO2). Environmentally friendly supercritical CO2 is the most popular and inexpensive solvent which has been used for preparation of nanodrugs and nanocarriers in drug delivery system with supercritical fluid technology. Delivery...
متن کاملDoxorubicin Loaded DNA Aptamer Linked Myristilated Chitosan Nanogel for Targeted Drug Delivery to Prostate Cancer
Recently, specific attention has been paid to aptamers, short DNA or RNA, as a tool for cancer diagnosis and therapy. In the present study MCS nanogels were prepared by Myristate: chitosan at 1:9 ratio and were characterized by several techniques. A selected ssDNA aptamer(Apt) capable of detecting LNCaP cells was linked to Myristilated chitosan nanogels (Apt-MCS) by glutaraldehyde and loaded wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 34 1 شماره
صفحات -
تاریخ انتشار 2014